Termination Proof Script
Consider the TRS R consisting of the rewrite rules
|
1: |
|
c(0,x) |
→ x |
2: |
|
c(x,c(y,z)) |
→ c(x + y,z) |
3: |
|
0 + 0 |
→ 0 |
4: |
|
0 + 1 |
→ 1 |
5: |
|
0 + 2 |
→ 2 |
6: |
|
0 + 3 |
→ 3 |
7: |
|
0 + 4 |
→ 4 |
8: |
|
0 + 5 |
→ 5 |
9: |
|
0 + 6 |
→ 6 |
10: |
|
0 + 7 |
→ 7 |
11: |
|
0 + 8 |
→ 8 |
12: |
|
0 + 9 |
→ 9 |
13: |
|
1 + 0 |
→ 1 |
14: |
|
1 + 1 |
→ 2 |
15: |
|
1 + 2 |
→ 3 |
16: |
|
1 + 3 |
→ 4 |
17: |
|
1 + 4 |
→ 5 |
18: |
|
1 + 5 |
→ 6 |
19: |
|
1 + 6 |
→ 7 |
20: |
|
1 + 7 |
→ 8 |
21: |
|
1 + 8 |
→ 9 |
22: |
|
1 + 9 |
→ c(1,0) |
23: |
|
2 + 0 |
→ 2 |
24: |
|
2 + 1 |
→ 3 |
25: |
|
2 + 2 |
→ 4 |
26: |
|
2 + 3 |
→ 5 |
27: |
|
2 + 4 |
→ 6 |
28: |
|
2 + 5 |
→ 7 |
29: |
|
2 + 6 |
→ 8 |
30: |
|
2 + 7 |
→ 9 |
31: |
|
2 + 8 |
→ c(1,0) |
32: |
|
2 + 9 |
→ c(1,1) |
33: |
|
3 + 0 |
→ 3 |
34: |
|
3 + 1 |
→ 4 |
35: |
|
3 + 2 |
→ 5 |
36: |
|
3 + 3 |
→ 6 |
37: |
|
3 + 4 |
→ 7 |
38: |
|
3 + 5 |
→ 8 |
39: |
|
3 + 6 |
→ 9 |
40: |
|
3 + 7 |
→ c(1,0) |
41: |
|
3 + 8 |
→ c(1,1) |
42: |
|
3 + 9 |
→ c(1,2) |
43: |
|
4 + 0 |
→ 4 |
44: |
|
4 + 1 |
→ 5 |
45: |
|
4 + 2 |
→ 6 |
46: |
|
4 + 3 |
→ 7 |
47: |
|
4 + 4 |
→ 8 |
48: |
|
4 + 5 |
→ 9 |
49: |
|
4 + 6 |
→ c(1,0) |
50: |
|
4 + 7 |
→ c(1,1) |
51: |
|
4 + 8 |
→ c(1,2) |
52: |
|
4 + 9 |
→ c(1,3) |
53: |
|
5 + 0 |
→ 5 |
54: |
|
5 + 1 |
→ 6 |
55: |
|
5 + 2 |
→ 7 |
56: |
|
5 + 3 |
→ 8 |
57: |
|
5 + 4 |
→ 9 |
58: |
|
5 + 5 |
→ c(1,0) |
59: |
|
5 + 6 |
→ c(1,1) |
60: |
|
5 + 7 |
→ c(1,2) |
61: |
|
5 + 8 |
→ c(1,3) |
62: |
|
5 + 9 |
→ c(1,4) |
63: |
|
6 + 0 |
→ 6 |
64: |
|
6 + 1 |
→ 7 |
65: |
|
6 + 2 |
→ 8 |
66: |
|
6 + 3 |
→ 9 |
67: |
|
6 + 4 |
→ c(1,0) |
68: |
|
6 + 5 |
→ c(1,1) |
69: |
|
6 + 6 |
→ c(1,2) |
70: |
|
6 + 7 |
→ c(1,3) |
71: |
|
6 + 8 |
→ c(1,4) |
72: |
|
6 + 9 |
→ c(1,5) |
73: |
|
7 + 0 |
→ 7 |
74: |
|
7 + 1 |
→ 8 |
75: |
|
7 + 2 |
→ 9 |
76: |
|
7 + 3 |
→ c(1,0) |
77: |
|
7 + 4 |
→ c(1,1) |
78: |
|
7 + 5 |
→ c(1,2) |
79: |
|
7 + 6 |
→ c(1,3) |
80: |
|
7 + 7 |
→ c(1,4) |
81: |
|
7 + 8 |
→ c(1,5) |
82: |
|
7 + 9 |
→ c(1,6) |
83: |
|
8 + 0 |
→ 8 |
84: |
|
8 + 1 |
→ 9 |
85: |
|
8 + 2 |
→ c(1,0) |
86: |
|
8 + 3 |
→ c(1,1) |
87: |
|
8 + 4 |
→ c(1,2) |
88: |
|
8 + 5 |
→ c(1,3) |
89: |
|
8 + 6 |
→ c(1,4) |
90: |
|
8 + 7 |
→ c(1,5) |
91: |
|
8 + 8 |
→ c(1,6) |
92: |
|
8 + 9 |
→ c(1,7) |
93: |
|
9 + 0 |
→ 9 |
94: |
|
9 + 1 |
→ c(1,0) |
95: |
|
9 + 2 |
→ c(1,1) |
96: |
|
9 + 3 |
→ c(1,2) |
97: |
|
9 + 4 |
→ c(1,3) |
98: |
|
9 + 5 |
→ c(1,4) |
99: |
|
9 + 6 |
→ c(1,5) |
100: |
|
9 + 7 |
→ c(1,6) |
101: |
|
9 + 8 |
→ c(1,7) |
102: |
|
9 + 9 |
→ c(1,8) |
103: |
|
x + c(y,z) |
→ c(y,x + z) |
104: |
|
c(x,y) + z |
→ c(x,y + z) |
105: |
|
0 * 0 |
→ 0 |
106: |
|
0 * 1 |
→ 0 |
107: |
|
0 * 2 |
→ 0 |
108: |
|
0 * 3 |
→ 0 |
109: |
|
0 * 4 |
→ 0 |
110: |
|
0 * 5 |
→ 0 |
111: |
|
0 * 6 |
→ 0 |
112: |
|
0 * 7 |
→ 0 |
113: |
|
0 * 8 |
→ 0 |
114: |
|
0 * 9 |
→ 0 |
115: |
|
1 * 0 |
→ 0 |
116: |
|
1 * 1 |
→ 1 |
117: |
|
1 * 2 |
→ 2 |
118: |
|
1 * 3 |
→ 3 |
119: |
|
1 * 4 |
→ 4 |
120: |
|
1 * 5 |
→ 5 |
121: |
|
1 * 6 |
→ 6 |
122: |
|
1 * 7 |
→ 7 |
123: |
|
1 * 8 |
→ 8 |
124: |
|
1 * 9 |
→ 9 |
125: |
|
2 * 0 |
→ 0 |
126: |
|
2 * 1 |
→ 2 |
127: |
|
2 * 2 |
→ 4 |
128: |
|
2 * 3 |
→ 6 |
129: |
|
2 * 4 |
→ 8 |
130: |
|
2 * 5 |
→ c(1,0) |
131: |
|
2 * 6 |
→ c(1,2) |
132: |
|
2 * 7 |
→ c(1,4) |
133: |
|
2 * 8 |
→ c(1,6) |
134: |
|
2 * 9 |
→ c(1,8) |
135: |
|
3 * 0 |
→ 0 |
136: |
|
3 * 1 |
→ 3 |
137: |
|
3 * 2 |
→ 6 |
138: |
|
3 * 3 |
→ 9 |
139: |
|
3 * 4 |
→ c(1,2) |
140: |
|
3 * 5 |
→ c(1,5) |
141: |
|
3 * 6 |
→ c(1,8) |
142: |
|
3 * 7 |
→ c(2,1) |
143: |
|
3 * 8 |
→ c(2,4) |
144: |
|
3 * 9 |
→ c(2,7) |
145: |
|
4 * 0 |
→ 0 |
146: |
|
4 * 1 |
→ 4 |
147: |
|
4 * 2 |
→ 8 |
148: |
|
4 * 3 |
→ c(1,2) |
149: |
|
4 * 4 |
→ c(1,6) |
150: |
|
4 * 5 |
→ c(2,0) |
151: |
|
4 * 6 |
→ c(2,4) |
152: |
|
4 * 7 |
→ c(2,8) |
153: |
|
4 * 8 |
→ c(3,2) |
154: |
|
4 * 9 |
→ c(3,6) |
155: |
|
5 * 0 |
→ 0 |
156: |
|
5 * 1 |
→ 5 |
157: |
|
5 * 2 |
→ c(1,0) |
158: |
|
5 * 3 |
→ c(1,5) |
159: |
|
5 * 4 |
→ c(2,0) |
160: |
|
5 * 5 |
→ c(2,5) |
161: |
|
5 * 6 |
→ c(3,0) |
162: |
|
5 * 7 |
→ c(3,5) |
163: |
|
5 * 8 |
→ c(4,0) |
164: |
|
5 * 9 |
→ c(4,5) |
165: |
|
6 * 0 |
→ 0 |
166: |
|
6 * 1 |
→ 6 |
167: |
|
6 * 2 |
→ c(1,2) |
168: |
|
6 * 3 |
→ c(1,8) |
169: |
|
6 * 4 |
→ c(2,4) |
170: |
|
6 * 5 |
→ c(3,0) |
171: |
|
6 * 6 |
→ c(3,6) |
172: |
|
6 * 7 |
→ c(4,2) |
173: |
|
6 * 8 |
→ c(4,8) |
174: |
|
6 * 9 |
→ c(5,4) |
175: |
|
7 * 0 |
→ 0 |
176: |
|
7 * 1 |
→ 7 |
177: |
|
7 * 2 |
→ c(1,4) |
178: |
|
7 * 3 |
→ c(2,1) |
179: |
|
7 * 4 |
→ c(2,8) |
180: |
|
7 * 5 |
→ c(3,5) |
181: |
|
7 * 6 |
→ c(4,2) |
182: |
|
7 * 7 |
→ c(4,9) |
183: |
|
7 * 8 |
→ c(5,6) |
184: |
|
7 * 9 |
→ c(6,3) |
185: |
|
8 * 0 |
→ 0 |
186: |
|
8 * 1 |
→ 8 |
187: |
|
8 * 2 |
→ c(1,8) |
188: |
|
8 * 3 |
→ c(2,4) |
189: |
|
8 * 4 |
→ c(3,2) |
190: |
|
8 * 5 |
→ c(4,0) |
191: |
|
8 * 6 |
→ c(4,8) |
192: |
|
8 * 7 |
→ c(5,6) |
193: |
|
8 * 8 |
→ c(6,4) |
194: |
|
8 * 9 |
→ c(7,2) |
195: |
|
9 * 0 |
→ 0 |
196: |
|
9 * 1 |
→ 9 |
197: |
|
9 * 2 |
→ c(1,8) |
198: |
|
9 * 3 |
→ c(2,7) |
199: |
|
9 * 4 |
→ c(3,6) |
200: |
|
9 * 5 |
→ c(4,5) |
201: |
|
9 * 6 |
→ c(5,4) |
202: |
|
9 * 7 |
→ c(6,3) |
203: |
|
9 * 8 |
→ c(7,2) |
204: |
|
9 * 9 |
→ c(8,1) |
205: |
|
x * c(y,z) |
→ c(x * y,x * z) |
206: |
|
c(x,y) * z |
→ c(x * z,y * z) |
|
There are 115 dependency pairs:
|
207: |
|
C(x,c(y,z)) |
→ C(x + y,z) |
208: |
|
C(x,c(y,z)) |
→ x +# y |
209: |
|
1 +# 9 |
→ C(1,0) |
210: |
|
2 +# 8 |
→ C(1,0) |
211: |
|
2 +# 9 |
→ C(1,1) |
212: |
|
3 +# 7 |
→ C(1,0) |
213: |
|
3 +# 8 |
→ C(1,1) |
214: |
|
3 +# 9 |
→ C(1,2) |
215: |
|
4 +# 6 |
→ C(1,0) |
216: |
|
4 +# 7 |
→ C(1,1) |
217: |
|
4 +# 8 |
→ C(1,2) |
218: |
|
4 +# 9 |
→ C(1,3) |
219: |
|
5 +# 5 |
→ C(1,0) |
220: |
|
5 +# 6 |
→ C(1,1) |
221: |
|
5 +# 7 |
→ C(1,2) |
222: |
|
5 +# 8 |
→ C(1,3) |
223: |
|
5 +# 9 |
→ C(1,4) |
224: |
|
6 +# 4 |
→ C(1,0) |
225: |
|
6 +# 5 |
→ C(1,1) |
226: |
|
6 +# 6 |
→ C(1,2) |
227: |
|
6 +# 7 |
→ C(1,3) |
228: |
|
6 +# 8 |
→ C(1,4) |
229: |
|
6 +# 9 |
→ C(1,5) |
230: |
|
7 +# 3 |
→ C(1,0) |
231: |
|
7 +# 4 |
→ C(1,1) |
232: |
|
7 +# 5 |
→ C(1,2) |
233: |
|
7 +# 6 |
→ C(1,3) |
234: |
|
7 +# 7 |
→ C(1,4) |
235: |
|
7 +# 8 |
→ C(1,5) |
236: |
|
7 +# 9 |
→ C(1,6) |
237: |
|
8 +# 2 |
→ C(1,0) |
238: |
|
8 +# 3 |
→ C(1,1) |
239: |
|
8 +# 4 |
→ C(1,2) |
240: |
|
8 +# 5 |
→ C(1,3) |
241: |
|
8 +# 6 |
→ C(1,4) |
242: |
|
8 +# 7 |
→ C(1,5) |
243: |
|
8 +# 8 |
→ C(1,6) |
244: |
|
8 +# 9 |
→ C(1,7) |
245: |
|
9 +# 1 |
→ C(1,0) |
246: |
|
9 +# 2 |
→ C(1,1) |
247: |
|
9 +# 3 |
→ C(1,2) |
248: |
|
9 +# 4 |
→ C(1,3) |
249: |
|
9 +# 5 |
→ C(1,4) |
250: |
|
9 +# 6 |
→ C(1,5) |
251: |
|
9 +# 7 |
→ C(1,6) |
252: |
|
9 +# 8 |
→ C(1,7) |
253: |
|
9 +# 9 |
→ C(1,8) |
254: |
|
x +# c(y,z) |
→ C(y,x + z) |
255: |
|
x +# c(y,z) |
→ x +# z |
256: |
|
c(x,y) +# z |
→ C(x,y + z) |
257: |
|
c(x,y) +# z |
→ y +# z |
258: |
|
2 *# 5 |
→ C(1,0) |
259: |
|
2 *# 6 |
→ C(1,2) |
260: |
|
2 *# 7 |
→ C(1,4) |
261: |
|
2 *# 8 |
→ C(1,6) |
262: |
|
2 *# 9 |
→ C(1,8) |
263: |
|
3 *# 4 |
→ C(1,2) |
264: |
|
3 *# 5 |
→ C(1,5) |
265: |
|
3 *# 6 |
→ C(1,8) |
266: |
|
3 *# 7 |
→ C(2,1) |
267: |
|
3 *# 8 |
→ C(2,4) |
268: |
|
3 *# 9 |
→ C(2,7) |
269: |
|
4 *# 3 |
→ C(1,2) |
270: |
|
4 *# 4 |
→ C(1,6) |
271: |
|
4 *# 5 |
→ C(2,0) |
272: |
|
4 *# 6 |
→ C(2,4) |
273: |
|
4 *# 7 |
→ C(2,8) |
274: |
|
4 *# 8 |
→ C(3,2) |
275: |
|
4 *# 9 |
→ C(3,6) |
276: |
|
5 *# 2 |
→ C(1,0) |
277: |
|
5 *# 3 |
→ C(1,5) |
278: |
|
5 *# 4 |
→ C(2,0) |
279: |
|
5 *# 5 |
→ C(2,5) |
280: |
|
5 *# 6 |
→ C(3,0) |
281: |
|
5 *# 7 |
→ C(3,5) |
282: |
|
5 *# 8 |
→ C(4,0) |
283: |
|
5 *# 9 |
→ C(4,5) |
284: |
|
6 *# 2 |
→ C(1,2) |
285: |
|
6 *# 3 |
→ C(1,8) |
286: |
|
6 *# 4 |
→ C(2,4) |
287: |
|
6 *# 5 |
→ C(3,0) |
288: |
|
6 *# 6 |
→ C(3,6) |
289: |
|
6 *# 7 |
→ C(4,2) |
290: |
|
6 *# 8 |
→ C(4,8) |
291: |
|
6 *# 9 |
→ C(5,4) |
292: |
|
7 *# 2 |
→ C(1,4) |
293: |
|
7 *# 3 |
→ C(2,1) |
294: |
|
7 *# 4 |
→ C(2,8) |
295: |
|
7 *# 5 |
→ C(3,5) |
296: |
|
7 *# 6 |
→ C(4,2) |
297: |
|
7 *# 7 |
→ C(4,9) |
298: |
|
7 *# 8 |
→ C(5,6) |
299: |
|
7 *# 9 |
→ C(6,3) |
300: |
|
8 *# 2 |
→ C(1,8) |
301: |
|
8 *# 3 |
→ C(2,4) |
302: |
|
8 *# 4 |
→ C(3,2) |
303: |
|
8 *# 5 |
→ C(4,0) |
304: |
|
8 *# 6 |
→ C(4,8) |
305: |
|
8 *# 7 |
→ C(5,6) |
306: |
|
8 *# 8 |
→ C(6,4) |
307: |
|
8 *# 9 |
→ C(7,2) |
308: |
|
9 *# 2 |
→ C(1,8) |
309: |
|
9 *# 3 |
→ C(2,7) |
310: |
|
9 *# 4 |
→ C(3,6) |
311: |
|
9 *# 5 |
→ C(4,5) |
312: |
|
9 *# 6 |
→ C(5,4) |
313: |
|
9 *# 7 |
→ C(6,3) |
314: |
|
9 *# 8 |
→ C(7,2) |
315: |
|
9 *# 9 |
→ C(8,1) |
316: |
|
x *# c(y,z) |
→ C(x * y,x * z) |
317: |
|
x *# c(y,z) |
→ x *# y |
318: |
|
x *# c(y,z) |
→ x *# z |
319: |
|
c(x,y) *# z |
→ C(x * z,y * z) |
320: |
|
c(x,y) *# z |
→ x *# z |
321: |
|
c(x,y) *# z |
→ y *# z |
|
The approximated dependency graph contains 2 SCCs:
{207,208,254-257}
and {317,318,320,321}.
-
Consider the SCC {207,208,254-257}.
The usable rules are {1-104}.
The constraints could not be solved.
-
Consider the SCC {317,318,320,321}.
There are no usable rules.
By taking the AF π with
π(*#) = 1 together with
the lexicographic path order with
empty precedence,
the rules in {317,318}
are weakly decreasing and
the rules in {320,321}
are strictly decreasing.
There is one new SCC.
-
Consider the SCC {317,318}.
By taking the AF π with
π(*#) = 2 together with
the lexicographic path order with
empty precedence,
the rules in {317,318}
are strictly decreasing.
Tyrolean Termination Tool (39.58 seconds)
--- May 4, 2006